An inductive approach to Coxeter arrangements and Solomon’s descent algebra
نویسندگان
چکیده
In our recent paper (Douglass et al. arXiv:1101.2075 (2011)), we claimed that both the group algebra of a finite Coxeter group W as well as the Orlik–Solomon algebra of W can be decomposed into a sum of induced one-dimensional representations of centralizers, one for each conjugacy class of elements of W , and gave a uniform proof of this claim for symmetric groups. In this note, we outline an inductive approach to our conjecture. As an application of this method, we prove the inductive version of the conjecture for finite Coxeter groups of rank up to 2.
منابع مشابه
v 4 [ m at h . C O ] 1 5 Ju l 1 99 9 Descent Algebras , Hyperplane Arrangements , and Shuffling Cards
Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These coincide for types A,B,C, H3, and rank two groups. Both notions have the same, simple eigenvalues. The hyperplane definition is especially natural and satisfies a positivity property when W is crystallographic and the...
متن کاملDescent algebras, hyperplane arrangements, and shuffling cards. To appear
This note establishes a connection between Solomon’s descent algebras and the theory of hyperplane arrangements. It is shown that card-shuffling measures on Coxeter groups, originally defined in terms of descent algebras, have an elegant combinatorial description in terms of random walk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved.
متن کاملDescent Algebras , Hyperplane Arrangements , and Shuffling Cards
Abstract Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These definitions coincide for types A,B,H3, and rank two groups. Both notions satisfy a convolution property and have the same simple eigenvalues. The hyperplane definition is especially natural and satisfies a po...
متن کاملCyclic Descents and P-Partitions
Louis Solomon showed that the group algebra of the symmetric group Sn has a subalgebra called the descent algebra, generated by sums of permutations with a given descent set. In fact, he showed that every Coxeter group has something that can be called a descent algebra. There is also a commutative, semisimple subalgebra of Solomon’s descent algebra generated by sums of permutations with the sam...
متن کاملThe module of affine descent classes of a Weyl group
The goal of this paper is to introduce an algebraic structure on the space spanned by affine descent classes of a Weyl group, by analogy and in relation to the structure carried by ordinary descent classes. The latter classes span a subalgebra of the group algebra, Solomon’s descent algebra. We show that the former span a left module over this algebra. The structure is obtained from geometric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012